

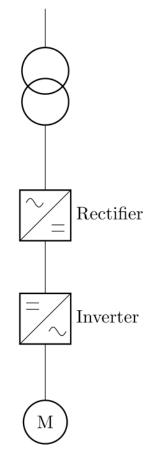
EMC Plan for Power Drive Systems – Prevent Interference with Others

Oskari Leppäaho Development Engineer, Main Circuit Danfoss Drives and Power Electronics oskari.leppaaho@danfoss.com

About the presenter

Oskari Leppäaho is a Development Engineer, Main Circuit for Danfoss Drives and Power Electronics in Vaasa, Finland

• PhD. INSA Rennes, France (2023). EU Horizon 2020, PETER project

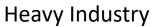

Focus areas:

- Electric Power Drives, Inverters and Converters from 1 kW to 10 MW
- Systems Engineering, Software and Hardware Integration
- EMC

Background – Power Drive System (PDS)

- PDSs transform grid voltage/frequency into a more usable form for electric motors and other equipment
 - Low (230-690 V) to medium (2.4 kV 25 kV) voltage
 - Typical power range is from kilowatts to megawatts
 - Focus of this presentation is on low voltage and megawatt power
- PDSs are commonly the main electrical energy consumers behind a feeding transformer
 - In closed systems, they could be the main producers, too!
- Energy savings and process control performance are main selling points

Where are the MW scale PDSs used?



Some fun!

Geothermal Energy Production



Mining Operations

Emissions or Immunity?

- Emissions
 - Switching of high voltage with fast speed (nanosecond-scale) is bound to generate a rich frequency spectrum
 - Mantra: "Energy efficiency first, EMC second"
 - There is no better way of operation known currently
- Immunity of control systems
 - Low-level control systems have largest challenges with self-compatibility
 - Higher level control systems can be susceptible to external disturbances
 - Some products are used in functional safety related systems
 - Cut power to half of the factory vs. Safe Torque Off (STO) of one machine under maintenance
- This presentation concentrates on emission aspects

Motivation for EMC plan

© Everfuel A/S

- Filters for MW-scale drive systems are bulky and expensive
 - Rule of thumb: cost equal to the drive cost
 - 3-level inverters, SiC & GaN power semiconductors help with filter cost
 - For now, just the cost balance is different
- Benefits from filtering are often contradicted
 - Arc furnaces
 - Old drive installations
 - Welding machines
- It is better to concentrate on the plant
 - Not a single installation

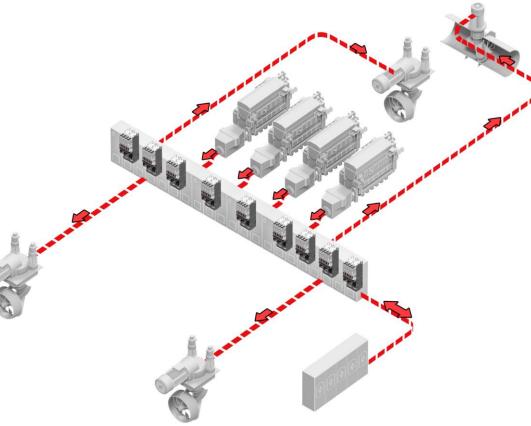
Rule-based vs. Risk-based EMC

- Rule-based approach
 - Every product complies with standard requirements for the installation
 - Result: Multiple bulky and expensive filters in the system
- Risk-based approach
 - Not all products/systems comply with the traditional requirements
 - System-level mitigation measures in use
 - Complete installation complies with the standard requirements
 - Result: Usage of filters only in optimum locations to minimize cost
 - IEC 61800-3:2022: "the user of the components should have a free decision from the economical point of view ... to achieve electromagnetic compatibility"

EMC plan – IEC 61800-3

- C4 class of IEC 61800-3 provides manufacturers a possibility to supply devices with unlimited high frequency emissions
- This class of devices needs coordination between installers and manufacturers
 - Annex E provides guidance on this topic
 - In practice, project-based EMC engineering is required to ensure compliance
- Isolated terra (IT) supply systems are one large area
 - They need to tolerate one ground fault
 - Due to economical reasons or functional safety (e.g. special pumps)
 - Capacitance to ground is limited => difficulties in implementing CM filtering
 - Isolation transformer is practically the only option => Expensive

System level considerations


- Is there a separate transformer supply?
 - Find out the HF characteristics of the transformer
 - "Free" filtering
- Stray-capacitance & inductance of the supply lines
 - "Free" filtering
 - Beware of resonances & transmission-line effects
- Separate machine room
 - Metallic doors for fire safety => 99 % of time closed
 - Find out the shielding effectiveness of the room
- Distance from victim equipment
 - Zoning between industrial, commercial & residential areas
 - Conducted emissions attenuate by radiating to the environment + skin effect
 - Radiated emissions attenuate by: min. 60 dB / km

Case – Marine Propulsion

- Electric main propulsion: 5 MW
 - Zone: Special power distribution
 - EMC filtering
 - Minimal
 - Typically, in a Faraday cage (engine room)
- Hotel load: 100 kW
 - Branched from special power distribution
 - Zone: General power distribution
 - EMC filtering
 - Transformer to cut common mode
 - LC differential mode filtering

Conclusion – EMC plan for PDS

Advantages

- Cost-effective solutions
- Size and weight gains
 - Especially important for mobile systems
- Possibility for better compatibility margins
 - EMC design by expert vs. blindly following EMC rules
 - Chef vs. cookbook

Disadvantages

- EMC expert involvement needed
 - Need knowledge on EMC & whole installation
 - Availability of experts?
- Amount of planning increases
 - Management plan
 - Control plan
 - Implementation plan
 - Verification plan

Thank you! Questions?

Oskari Leppäaho Development Engineer, Main Circuit Danfoss Drives and Power Electronics oskari.leppaaho@danfoss.com